Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2309927, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498774

RESUMO

The development of efficient and durable non-precious hydrogen evolution reaction (HER) catalysts for scaling up alkaline water/seawater electrolysis is highly desirable but challenging. Amorphous-crystalline (A-C) heterostructures have garnered attention due to their unusual atomic arrangements at hetero-interfaces, highly exposed active sites, and excellent stability. Here, a heterogeneous synthesis strategy for constructing A-C non-homogeneous interfacial centers of electrocatalysts on nanocages is presented. Isolated PdCo clusters on nanoscale islands in conjunction with Co3 S4 A-C, functioning as a bifunctional site "island-sea" synergy, enable the dynamic confinement design of metal active atoms, resulting in excellent HER catalytic activity and durability. The hierarchical structure of hollow porous nanocages and nanoclusters, along with their large surface area and multi-dimensional A-C boundaries and defects, provides the catalyst with abundant active centers. Theoretical calculations demonstrate that the combination of PdCo and Co3 S4 regulates the redistribution of interface electrons effectively, promoting the sluggish water-dissociation kinetics at the cluster Co sites. Additionally, PdCo-Co3 S4  heterostructure nanocages exhibit outstanding HER activity in alkaline seawater and long-term stability for 100 h, which can be powered by commercial silicon solar cells. This finding significantly advances the development of alkaline seawater electrolysis for large-scale hydrogen production.

2.
CNS Neurosci Ther ; 30(2): e14557, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38421132

RESUMO

BACKGROUND: There is growing evidence of a strong correlation between pain sensitivity and cognitive function under both physiological and pathological conditions. However, the detailed mechanisms remain largely unknown. In the current study, we sought to explore candidate genes and common molecular mechanisms underlying pain sensitivity and cognitive function with a transcriptome-wide association study using recombinant inbred mice from the BXD family. METHODS: The pain sensitivity determined by Hargreaves' paw withdrawal test and cognition-related phenotypes were systematically analyzed in 60 strains of BXD mice and correlated with hippocampus transcriptomes, followed by quantitative trait locus (QTL) mapping and systems genetics analysis. RESULTS: The pain sensitivity showed significant variability across the BXD strains and co-varies with cognitive traits. Pain sensitivity correlated hippocampual genes showed a significant involvement in cognition-related pathways, including glutamatergic synapse, and PI3K-Akt signaling pathway. Moreover, QTL mapping identified a genomic region on chromosome 4, potentially regulating the variation of pain sensitivity. Integrative analysis of expression QTL mapping, correlation analysis, and Bayesian network modeling identified Ring finger protein 20 (Rnf20) as the best candidate. Further pathway analysis indicated that Rnf20 may regulate the expression of pain sensitivity and cognitive function through the PI3K-Akt signaling pathway, particularly through interactions with genes Ppp2r2b, Ppp2r5c, Col9a3, Met, Rps6, Tnc, and Kras. CONCLUSIONS: Our study demonstrated that pain sensitivity is associated with genetic background and Rnf20-mediated PI3K-Akt signaling may involve in the regulation of pain sensitivity and cognitive functions.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Camundongos Endogâmicos C57BL , Teorema de Bayes , Limiar da Dor , Cognição
3.
J Integr Neurosci ; 23(2): 38, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38419449

RESUMO

Perioperative neurocognitive disorders (PND) are a cognitive impairment that occurs after anesthesia, especially in elderly patients and significantly affects their quality of life. The hippocampus, as a critical region for cognitive function and an important location in PND research, has recently attracted increasing attention. However, in the hippocampus the impact of anesthesia and its underlying mechanisms remain unclear. This review focuses on investigation of the effects of anesthesia on the hippocampal dopamine (DA) system and explores its potential association with PND. Through comprehensive review of existing studies, it was found that anesthesia affects the hippocampus through various pathways involved in metabolism, synaptic plasticity and oxygenation. Anesthesia may also influence the DA neurotransmitter system in the brain which plays a role in emotions, rewards, learning and memory functions. Specifically, anesthesia may participate in the pathogenesis of PND by affecting the DA system within the hippocampus. Future studies should explore the molecular mechanisms of these effects through techniques such as neuroimaging to study real-time effects to improve animal models to better simulate clinical observations. For clinical application, it is recommended that physicians exercise caution when selecting and managing anesthetic drugs by adopting comprehensive cognitive assessment methods to reduce post-anesthesia cognitive risk. Overall, this review provides a better understanding of the relationship between the hippocampal DA system and perioperative neurocognitive function and provides valuable guidance for prevention and treatment strategies for PND.


Assuntos
Disfunção Cognitiva , Dopamina , Animais , Humanos , Idoso , Dopamina/metabolismo , Dopamina/farmacologia , Qualidade de Vida , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/patologia , Hipocampo/metabolismo
4.
ACS Nano ; 17(23): 24070-24079, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38009586

RESUMO

The alkaline hydrogen evolution reaction (HER) in an anion exchange membrane water electrolyzer (AEMWE) is considered to be a promising approach for large-scale industrial hydrogen production. Nevertheless, it is severely hampered by the inability to operate tolerable HER catalysts consistently under low overpotentials at ampere-level current densities. Here, we develop a universal ligand-exchange (MOF-on-MOF) modulation strategy to synthesize ultrafine Fe2P and Co2P nanoparticles, which are well anchored on N and P dual-doped carbon porous nanosheets (Fe2P-Co2P/NPC). In addition, benefiting from the downshift of the d-band center and the interfacial Co-P-Fe bridging, the electron-rich P site is triggered, which induces the redistribution of electron density and the swapping of active centers, lowering the energy barrier of the HER. As a result, the Fe2P-Co2P/NPC catalyst only requires a low overpotential of 175 mV to achieve a current density of 1000 mA cm-2. The solar-driven water electrolysis system presents a record-setting and stable solar-to-hydrogen conversion efficiency of 20.36%. Crucially, the catalyst could stably operate at 1000 mA cm-2 over 1000 h in a practical AEMWE at an estimated cost of US$0.79 per kilogram of H2, which achieves the target (US$2 per kg of H2) set by the U.S. Department of Energy (DOE).

5.
BMJ Open ; 13(10): e075332, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821136

RESUMO

INTRODUCTION: Obesity is a complex and multifactorial disease that has affected many adolescents in recent decades. Clinical practice guidelines recommend exercise as the key treatment option for adolescents with overweight and obesity. However, the effects of virtual reality (VR) exercise on the physical and brain health of adolescents with overweight and obese remain unclear. This study aims to evaluate the effects of physical and VR exercises on physical and brain outcomes and explore the differences in benefits between them. Moreover, we will apply a multiomics analysis to investigate the mechanism underlying the effects of physical and VR exercises on adolescents with overweight and obesity. METHODS AND ANALYSIS: This randomised controlled clinical trial will include 220 adolescents with overweight and obesity aged between 11 and 17 years. The participants will be randomised into five groups after screening. Participants in the exercise groups will perform an exercise programme by adding physical or VR table tennis or soccer classes to routine physical education classes in schools three times a week for 8 weeks. Participants in the control group will maintain their usual physical activity. The primary outcome will be the change in body fat mass measured using bioelectrical impedance analysis. The secondary outcomes will include changes in other physical health-related parameters, brain health-related parameters and multiomics variables. ETHICS AND DISSEMINATION: This study was approved by the Ethics Committee of Shanghai Sixth People's Hospital and registered in the Chinese Clinical Trial Registry. Dissemination of the findings will include peer-reviewed publications, conference presentations and media releases. TRIAL REGISTRATION NUMBER: ChiCTR2300068786.


Assuntos
Sobrepeso , Realidade Virtual , Humanos , Adolescente , Criança , Sobrepeso/prevenção & controle , China , Obesidade/terapia , Exercício Físico , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Cancer Res Commun ; 3(7): 1366-1377, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37501682

RESUMO

NF1 is a key tumor suppressor that represses both RAS and estrogen receptor-α (ER) signaling in breast cancer. Blocking both pathways by fulvestrant (F), a selective ER degrader, together with binimetinib (B), a MEK inhibitor, promotes tumor regression in NF1-depleted ER+ models. We aimed to establish approaches to determine how NF1 protein levels impact B+F treatment response to improve our ability to identify B+F sensitive tumors. We examined a panel of ER+ patient-derived xenograft (PDX) models by DNA and mRNA sequencing and found that more than half of these models carried an NF1 shallow deletion and generally have low mRNA levels. Consistent with RAS and ER activation, RET and MEK levels in NF1-depleted tumors were elevated when profiled by mass spectrometry (MS) after kinase inhibitor bead pulldown. MS showed that NF1 can also directly and selectively bind to palbociclib-conjugated beads, aiding quantification. An IHC assay was also established to measure NF1, but the MS-based approach was more quantitative. Combined IHC and MS analysis defined a threshold of NF1 protein loss in ER+ breast PDX, below which tumors regressed upon treatment with B+F. These results suggest that we now have a MS-verified NF1 IHC assay that can be used for patient selection as a complement to somatic genomic analysis. Significance: A major challenge for targeting the consequence of tumor suppressor disruption is the accurate assessment of protein functional inactivation. NF1 can repress both RAS and ER signaling, and a ComboMATCH trial is underway to treat the patients with binimetinib and fulvestrant. Herein we report a MS-verified NF1 IHC assay that can determine a threshold for NF1 loss to predict treatment response. These approaches may be used to identify and expand the eligible patient population.


Assuntos
Neoplasias da Mama , Proteogenômica , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neurofibromina 1/genética , Fulvestranto/farmacologia , Receptores de Estrogênio/genética , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição NFI , RNA Mensageiro , Quinases de Proteína Quinase Ativadas por Mitógeno
7.
ACS Nano ; 17(16): 16008-16019, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37382226

RESUMO

Designing high-efficiency and low-cost catalysts with high current densities for the oxygen evolution reaction (OER) is critical for commercial seawater electrolysis. Here, we present a heterophase synthetic strategy for constructing an electrocatalyst with dense heterogeneous interfacial sites among crystalline Ni2P, Fe2P, CeO2, and amorphous NiFeCe oxides on nickel foam (NF). The synergistic effect of high-density crystalline and amorphous heterogeneous interfaces effectively promotes the redistribution of the charge density and optimizes the adsorbed oxygen intermediates, lowering the energy barrier and promoting the O2 desorption, thus enhancing the OER performance. The obtained NiFeO-CeO2/NF catalyst exhibited outstanding OER catalytic activity, with low overpotentials of 338 and 408 mV required to attain high current densities of 500 and 1000 mA cm-2, respectively, in alkaline natural seawater electrolytes. The solar-driven seawater electrolysis system presents a record-setting and stable solar-to-hydrogen conversion efficiency of 20.10%. This work provides directives for developing highly effective and stable catalysts for large-scale clean energy production.

8.
Small ; 19(34): e2301589, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093203

RESUMO

For large-scale fuel cell applications, it is significant to replace expensive Pt-based oxygen reduction reaction (ORR) electrocatalysts with nonprecious metal- or metal-free carbon-based catalysts with high activity. However, it is still challenging to deeply understand the role of intrinsic defects and the origin of ORR activity in pure nanocarbon. Therefore, a novel self-assembly and a pyrolysis strategy to fabricate defect-rich mesoporous carbon nanoribbons are presented. Due to the effective regulation of nanoarchitecture, a vast number of defective catalytic sites (edge defects and holes) are exposed, which thereby enhances the electron transfer kinetics and catalytic activity. Such undoped nanoribbons display a large half-wave potential of 0.837 V, excellent long-term stability, and exceptional methanol tolerance, surpassing the most undoped ORR catalysts and the commercial Pt/C (20 wt.%) catalyst. Structural characterizations and density functional theory (DFT) calculations confirm that the zigzag edge defects and the armchair pentagon at the hole defect are responsible for outstanding ORR performance.

9.
J Colloid Interface Sci ; 635: 578-587, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36610201

RESUMO

Dual-single-atom catalysts are well-known due to their excellent catalytic performance of oxygen reduction reaction (ORR) and the tunable coordination environment of the active sites. However, it is still challengable to finely modulate the electronic states of the metal atoms and facilely fabricate a catalyst with dual-single atoms homogeneously dispersed on conductive skeletons with good mass transport. Herein, atomic FeNx/ZnNx sites anchored N, S co-doped nano-porous carbon plates/nanotubes material (Fe0.10ZnNSC) is rationally prepared via a facile room-temperature reaction and high-temperature pyrolysis. The as-prepared Fe0.10ZnNSC catalyst exhibits a positive onset potential of 0.956 V, an impressive half-wave potential of 0.875 V, excellent long-term durability, and a high methanol resistance, outperforming the benchmark Pt/C. The outstanding ORR performance of Fe0.10ZnNSC is due to its unique nanoarchitecture: a large specific surface area (1092.8 cm2 g-1) and well-developed nanopore structure ensure the high accessibility of active sites; the high conductivity of the carbon matrix guarantees a strong ability to transport electrons to the active sites; and the optimized electronic states of FeNx and ZnNx sites possess good oxygen intermediate adsorption/desorption capacity. This strategy can be extended to design and fabricate other non-precious dual-single-atom ORR catalysts.

10.
ACS Nano ; 17(1): 636-647, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36524746

RESUMO

Developing highly efficient and stable noble-metal-free electrocatalysts for water splitting is critical for producing clean and sustainable energy. Here, we design a hierarchical transition metal hydroxide/sulfide (NiFe(OH)x-Ni3S2/NF) electrode with dual heterointerface coexistence using a cation exchange-induced surface reconfiguration strategy. The electrode exhibits superior electrocatalytic activities, achieving low overpotentials of 55 mV for hydrogen evolution and 182 mV for oxygen evolution at 10 mA cm-2. Furthermore, the assembled two-electrode system requires voltages as low as 1.55 and 1.62 V to deliver industrially relevant current densities of 500 and 1000 mA cm-2, respectively, with excellent durability for over 200 h, which is comparable to commercial electrolysis. Theoretical calculations reveal that the hierarchical heterostructure increases the electronic delocalization of the Fe and Ni catalytic centers, lowering the energy barrier of the rate-limiting step and promoting O2 desorption. Finally, by implementing the catalysts in a solar-driven water electrolysis system, we demonstrate a record and durable solar-to-hydrogen (STH) conversion efficiency of up to 20.05%. This work provides a promising strategy for developing low-cost and high-efficiency bifunctional catalysts for a large-scale solar-to-hydrogen generation.

11.
J Colloid Interface Sci ; 633: 897-906, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36508397

RESUMO

Electrocatalytic water splitting to generate high-quality hydrogen is an attractive renewable energy storage technology; however, it is still far from becoming a real-world application. In this study, we developed an effective and stable nickel foam-supported Fe2P@CoMnP4 heterostructure electrocatalyst for overall water splitting. As expected, the as-obtained Fe2P@CoMnP4/NF electrocatalyst exhibits superb bifunctional catalytic activity and only requires extremely low overpotentials of 53 and 249 mV to achieve a current density of 10 mA cm-2 for the hydrogen and oxygen evolution reactions, respectively. Moreover, a two-electrode electrolyzer assembled using Fe2P@CoMnP4/NF as electrodes operates at the low cell voltage of 1.54 V at 10 mA cm-2, showing excellent long-term stability for 140 h. Theoretical calculations indicate that the surface electronic structure is effectively adjusted by the generated heterointerfaces between the Fe2P and CoMnP4 in a two-phase matrix, resulting in a Gibbs free energy of hydrogen adsorption close to zero and high intrinsic activity. This innovative strategy is a valuable route for producing low-cost high-performance bifunctional electrocatalysts for water splitting.

12.
Phys Chem Chem Phys ; 24(45): 27923-27929, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36367502

RESUMO

The HER requires a highly efficient, cost-effective, and stable catalyst to adapt to the large-scale hydrogen industry. Nickel has been confirmed to be useful to drive the water splitting reaction, but the intrinsic performance remains unsatisfactory. In this work, nickel (EG-Ni) with compressive strain was prepared through a one-step electrochemical deposition strategy. It shows an outstanding enhancement for the HER, and it achieves a current density of 10 mA cm-2 at a low overpotential of 85.9 mV. A long-term durability test proves that the EG-Ni can tolerate a large current density of 100 mA cm-2, and the overpotential remains steady without dramatically increasing. Such a low overpotential and superior stability are attributed to the optimized adsorption energy on the catalyst surface, as evidenced by the downshifted position of the d-band center.

13.
Artigo em Inglês | MEDLINE | ID: mdl-35942370

RESUMO

To determine the curative effect and prognosis of Solitaire FR stent thrombectomy integrated with the suction thrombus on the treatment of acute middle cerebral artery occlusion (AMCAO). Based on the treatment, patients suffering from AMCAO were separated into the Solitaire FR group (Solitaire FR stent + suction thrombus) and suction group (suction thrombus). Modified thrombolysis in cerebral infarction grading, National Institutes of Health Stroke Scale (NIHSS) score, modified Rankin Scale score, and safety performance were compared between the two groups. The operation time in the suction group was obviously shorter than the Solitaire FR group (P < 0.05). Significant differences were observed in the NIHSS scores 1 week and 4 weeks after the operation between the Solitaire FR group and the suction group (P < 0.05). The NIHSS scores 1 week and 4 weeks after operation were significantly lower than those before operation (P < 0.05). NIHSS scores 1 week after operation did not show obvious difference (P > 0.05). The Solitaire FR group showed obvious lower NIHSS scores than the suction group 4 weeks after surgery (P < 0.05). Statistically obvious difference in cerebral infarction grading of modified thrombolysis between the Solitaire FR group and the suction group were observed (P < 0.05). The recanalization rate of the Solitaire FR group was obviously higher than the suction group (P < 0.05). The difference in the monthly modified Rankin Scale score was obvious (P < 0.05). The good prognosis rate of the Solitaire FR group was obviously higher than the suction group (P < 0.05). No obvious differences in the incidence of internal bleeding, reocclusion, and 3-month postoperative mortality were observed (P > 0.05). These results showed that the treatment of the Solitaire FR stent + suction thrombus in AMCAO patients has a good thrombus recanalization rate and is helpful in improving the prognosis and safety performance.

14.
Molecules ; 27(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35268811

RESUMO

Reducing the surface reflectivity of silicon substrates is essential for preparing high-performance Si-based solar cells. We synthesized pyramid-nanowire-structured Si (Si-PNWs) anti-reflection substrates, which have excellent light-trapping ability (<4% reflectance). Furthermore, diethyl phthalate (DEP), a water-insoluble phthalic acid ester, was applied to optimize the Si-PNWs/PEDOT:PSS interface; the photoelectric conversion efficiency of heterojunction solar cells was shown to increase from 9.82% to 13.48%. We performed a detailed examination of the shape and optical characteristics of Si-PNWs, as well as associated photoelectric performance tests, to investigate the origin of performance improvements in Si-PNWs/PEDOT:PSS heterojunction solar cells (HSCs).

15.
ACS Omega ; 6(31): 20130-20138, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395965

RESUMO

The large-scale and controllable synthesis of novel N-doped three-dimensional (3D) carbon nanocage-decorated carbon skeleton sponges (Co-NCMS) is introduced. These Co-NCMS were highly active and durable non-noble metal catalysts for the oxygen reduction reaction (ORR). This hybrid electrocatalyst showed high ORR activity with a diffusion-limiting current of 5.237 mA·cm-2 in 0.1 M KOH solution through the highly efficient 4e- pathway, which was superior to that of the Pt/C catalyst (4.99 mA·cm-2), and the ORR Tafel slope is ca. 67.7 mV·dec-1 at a high potential region, close to that of Pt/C. Furthermore, Co-NCMS exhibited good ORR activity in acidic media with an onset potential comparable to that of the Pt/C catalyst. Most importantly, the prepared catalyst showed much higher stability and better methanol tolerance in both alkaline and acidic solutions. The power density obtained in a proton exchange membrane fuel cell was as high as 0.37 W·cm-2 at 0.19 V compared with 0.45 W·cm-2 at 0.56 V for the Pt/C catalyst. In Co-NCMS, the N-doped carbon nanocages facilitated the diffusion of the reactant, maximizing the exposure of active sites on the surface and protecting the active metallic core from oxidation. This made Co-NCMS one of the best non-noble metal catalysts and potentially offers an alternative approach for the efficient utilization of active transition metals in electrocatalyst applications.

16.
Pestic Biochem Physiol ; 164: 122-129, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32284117

RESUMO

Imidacloprid (IMI) is a widely used neonicotinoid pesticide in the world, its environmental and human health risk has particularly attracted the attention of researchers. Caffeic acid phenethyl ester (CAPE), an active polyphenol of propolis, has many pharmacological activities including free radical scavenger, anti-inflammatory, and anti-oxidant. In this study, protective effect of CAPE against IMI induced liver injury in mice was performed. Administration of 1 and 2.5 mg/kg CAPE markedly prevented serum AST and ALT increase in 5 mg/kg IMI-induced mice. CAPE significantly downregulated liver NO generation and lipid peroxidation, and upregulated glutathione, catalase, superoxide dismutase and glutathione peroxidase in a dose-dependent manner in liver of IMI-induced mice. Endoplasmic reticulum stress represented by the swelling of endoplasmic reticulum was observed by transmission electron microscope in IMI group. Pretreatment of 2.5 mg/kg CAPE significantly attenuated the endoplasmic reticulum stress induced by IMI in liver. Western blot analysis illustrated that pretreatment of CAPE downregulated the upregulation of TNF-α and IFN-γ induced by IMI in liver of mice. Moreover, the increase of positive apoptotic hepatocytes further suggested apoptosis might be involved in IMI-induced hepatotoxicity. Pretreatment of 1 and 2.5 mg/kg CAPE significantly decreased positive apoptotic hepatocytes, suggested that CAPE prevented apoptosis in liver of IMI-induced mice. In conclusion, CAPE prevented liver injury in IMI-induced mice via attenuation of oxidative stress, endoplasmic reticulum stress, inflammation and apoptosis. Our findings may have broad biological and environmental implications for future research on the therapeutic strategy to prevent liver injury induced by pesticides.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Estresse do Retículo Endoplasmático , Animais , Antioxidantes , Apoptose , Ácidos Cafeicos , Humanos , Inflamação , Camundongos , Neonicotinoides , Nitrocompostos , Estresse Oxidativo , Álcool Feniletílico/análogos & derivados
17.
ChemSusChem ; 13(4): 741-748, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31846205

RESUMO

Developing highly active nonprecious-metal catalysts for the oxygen reduction reaction (ORR) is of great significance for reducing the cost of fuel cells. 3D-ordered porous structures could substantially improve the performance of the catalysts because of their excellent mass-diffusion properties and high specific surface areas. Herein, ordered porous ZIF-67 was prepared by forced molding of a polystyrene template, and Co-supported, N-doped, 3D-ordered porous carbon (Co-NOPC) was obtained after further carbonization. Co-NOPC exhibited excellent performance for the ORR in an alkaline medium with a half-wave potential of 0.86 V vs. reversible hydrogen electrode (RHE), which is higher than that of the state-of-the-art Pt/C (0.85 V vs. RHE). Moreover, the substantially improved catalytic performance of Co-NOPC compared with Co-supported, N-doped carbon revealed the key role of its hierarchical porosity in boosting the ORR. Co-NOPC also exhibited a close-to-ideal four-electron transfer path, long-term durability, and resistance to methanol penetration, which make it promising for large-scale application.

18.
Anal Chim Acta ; 1078: 32-41, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31358226

RESUMO

In this work, we report double-shelled yolk-shell Si@C structure as a high-performance electrochemical sensing material for heavy metal ions. A SiO2-assisted polybenzoxazine (PB) coating strategy is used to synthesize highly monodispersed Si@C microspheres. After thermal carbonization of PB layers and selective removal of the SiO2 layers, Si@C microspheres were prepared. The resultant Si@C microspheres exhibit uniform spherical morphology and clearly double-shelled yolk-shell structures. The obtained Si@C microspheres are employed to prepare the chemically modified electrode for the sensitive determination of Cd(II) and Pb(II). By the method of anodic stripping voltammetry, the Si@C-based electrode shows a very wide linear dynamic range for target ions (e.g., 0.5-400 µg L-1 for Cd(II) and Pb(II)) and low limit of detections (e.g., 0.068 µg L-1 for Cd(II) and for 0.105 µg L-1 Pb(II)). The remarkable results, such as excellent resistance to interference ions, good repeatability, and reproducibility were also obtained. Furthermore, compared with those Cd(II) and Pb(II) sensors known in the literature, the analytical performance of Si@C-based electrode is better. Finally, when further used to determine Cd(II) and Pb(II) in tap water and lake water, the results of fabricated electrode successfully achieve good consistency with the data obtained from inductively coupled plasma-mass spectrometry (ICP-MS).

19.
Nanotechnology ; 30(19): 195601, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30695771

RESUMO

Quantum dots/graphene (QDs/Gr) composites have become the research hotspot recently due to their unique synergistic effect as optical absorption material for next-generation electronic and optoelectronic devices. In this work, Ge QDs/Gr composite is prepared by a simple and effective ion-beam sputtering deposition technique. The intact growth evolution process is detailly investigated by means of the effect of Ge deposition amount, which will induce the enhanced crystallinity in QDs and the reduced defects in graphene. Moreover, a feasible and inspiring strategy to effectively tune doping in graphene by artificial control through changing the deposition amount of Ge atoms on graphene is demonstrated. In addition, charge transfer and interaction strength at the interface of Ge QD and graphene is influenced via the oxygen defect in the QD surface, which is consistent with field-effect transistor test and first-principle calculations. The p-doping characteristics of graphene decorated by Ge QDs may have significant application prospects in energy band engineering of graphene-based building blocks for graphene-based composite development and near-infrared detector applications.

20.
Waste Dispos Sustain Energy ; 1(3): 177-197, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34308260

RESUMO

Environmentally persistent free radicals (EPFRs) are a new class of pollutants that are long-lived in fine particles (PM2.5), i.e., their 1/e lifetime ranges from days to months (or even infinite). They are capable of producing harmful reactive oxygen species such as hydroxyl radicals. The redox cycling of EPFRs is considered as an important pathway for PM2.5 to induce oxidative stress inside the humans, causing adverse health effects such as respiratory and cardiovascular diseases. Consequently, research regarding their toxicity, formation and environmental occurrences in PM2.5 has attracted increasing attentions globally during the past two decades. However, literature data in this field remain quite limited and discrete. Hence, an extensive review is urgently needed to summarize the current understanding of this topic. In this work, we systematically reviewed the analytical methods and environmental occurrences, e.g., types, concentrations, and decay behaviors, as well as possible sources of EPFRs in PM2.5. The types of pretreatment methods, g-values of common EPFRs and categories of decay processes were discussed in detail. Moreover, great efforts were made to revisit the original data of the published works of EPFRs in airborne particulate matter and provided additional useful information for comparison where possible, e.g., their mean and standard deviation of g-values, line widths (ΔH p-p), and concentrations. Finally, possible research opportunities were highlighted to further advance our knowledge of this emerging issue.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...